
PHYSICAL REVIEW E JANUARY 1999VOLUME 59, NUMBER 1
Symmetry breaking in ionization wave turbulence

S. Niedner and H.-G. Schuster
Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universita¨t, D-24098 Kiel, Germany

T. Klinger
Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universita¨t, D-24098 Kiel, Germany

G. Bonhomme
Laboratoire de Physique des Millieux Ionise´s, Universite´ Henri Poincaré, F-54506 Vandœuvre-le`s-Nancy, France
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Experimental data of weakly turbulent ionization waves in a plasma glow discharge~a reaction-diffusion
system! are analyzed by biorthogonal decomposition. The spatiotemporal dynamics of a single traveling wave
and of turbulence are considered. A biorthogonal decomposition analysis of the symmetry properties suggests
that turbulence is established here by strong modulation of traveling waves. To mimic this essential feature of
the turbulent dynamics, the plasma discharge is periodically perturbed, and a monochromatic traveling ioniza-
tion wave is modulated in a controlled way. The low-dimensional projection of the spatiotemporal data allows
for a reconstruction of the modulation function. Similarities between the periodically perturbed and the turbu-
lent state support the assumption that ionization wave turbulence consists of modulated traveling waves.
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PACS number~s!: 05.70.Ln, 05.45.2a, 52.35.Ra
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I. INTRODUCTION

Probably one of the most challenging subjects in the fi
of nonlinear dynamical systems is the turbulence proble
Though it has long been investigated, the present situatio
the conceptual and theoretical understanding is far from
ing satisfactory. It has been realized that turbulence is n
unity, i.e., its nature can considerably differ depending on
specific physical system. Prominent examples are the ch
cal waves~phase turbulence! @1# and neutral fluids@2#.

In the present paper, the spatiotemporal dynamics of re
lar and turbulent plasma ionization waves is studied. Gen
ally speaking, ionization waves are of reaction-diffusion ty
and are described by a set of partial differential equation
the form

]n

]t
5DDn1S~x,t !, ~1!

where the space and time evolution of the densityn(x,t) is
given by diffusion~with diffusion constantD) and reaction
described by the source termS(x,t). Much attention was
devoted to chemical waves that develop a particular type
phase turbulence@3#. An often overseen physical syste
whose collective dynamics is governed by the balance
tween particle loss and production is the positive column
plasma glow discharges where instabilities in the ionizat
degree lead to propagating waves, the so-called ioniza
waves. In Sec. II we give a brief introduction into the phys
of ionization waves.

In an empirical approach, grounded on the analysis
experimental observations, we investigate the modulation
spatiotemporal structures and symmetry breaking of reg
and turbulent ionization waves. A powerful framework f
the study of space-time data is biorthogonal decomposi
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~BD! @4,5#, also known as proper orthogonal decompositi
or Karhunen-Loe`we decomposition@6#. BD provides instru-
ments that are highly sensitive in detecting spatiotempo
symmetries@7# and modulations@8#. Furthermore, BD allows
one to identify the energetically most dominant ‘‘modes’’
the spatiotemporal data. These eigenmodes are used as
sis for projection on low-dimensional subspaces conside
for further analysis. In a previous study, this general a
proach gave valuable insights into the bifurcation struct
@9# and three-wave coupling@10# of plasma drift waves. Drift
waves are based on a Rayleigh-Taylor-type fluid instabil
and consequently the turbulence cannot be compared to
ization wave turbulence. Nevertheless, the successful ap
cation of the BD formalism in drift wave dynamics encou
ages one to go here along the same lines. We will come b
to this point below.

The paper is organized as follows. In Sec. II, after so
notes on the physics of ionization waves, we describe
setup of the plasma experiment. In Sec. III the concepts
BD are summarized. The analysis of the experimental dat
done in Sec. IV. We discuss our findings in Sec. V, a
make a summary in Sec. VI.

II. EXPERIMENT

The experimental arrangement consists of a cold-cath
discharge tube~lengthL550 cm, diameterd53.0 cm) that
is operated with neon as neutral gas~pressure p51
22 mbar). The discharge is sustained by an externally
plied voltage and the current (I d510–20 mA) is limited by
a series resistor~Fig. 1!. The integral light flux is picked up
by a linear array of 64 phototransistors, positioned along
homogenous positive column of lengthl 540 cm. In this
way the fluctuations of the light flux are simultaneously r
corded in space and time. The distance between each
52 ©1999 The American Physical Society
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FIG. 1. Schemtic diagram of the experiment
device. The~spectrally! integral light emission is
recorded by a linear array of 64 photodetector
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photo transistors isDx5 l /6350.635 cm and the samplin
rate isDt530ms with eight-bit accuracy. The resulting Ny
quist limits arekNy50.79 cm21 and f Ny516.6 kHz, re-
spectively.

It is known that in a certain range of operation the lig
flux fluctuations are caused by moving striations, also kno
as ionization waves@11#. In general, ionization waves ar
axially propagating in the positive column of glow dischar
plasmas operated at a base pressure of a few mbar, whe
ionization degree is low and the particle motion is domina
by diffusion in the externally applied electric field. Review
on the physical properties of the positive column and ear
investigations on ionization waves can be found in Re
@11–13#. It was discovered that ionization waves are ess
tially one-dimensional phenomena since the diffusion in
radial direction~we restrict the discussion to cylindrical ge
ometry! can be approximated by the particle lifetime on
Roughly speaking, ionization waves are temperature wa
leading to propagating fluctuations in the ionization degr
The latter establishes density fluctuationsn(x,t) propagating
axially as traveling waves. The source term in Eq.~1! is then
given byS(x,t)5I (x,t)2R(x,t), whereI (x,t) is the ioniza-
tion ~particle production! and R(x,t) is the recombination
~particle loss! due to wall losses. The dynamics] tn of ion-
ization waves is determined by the balance between
source termS(x,t) and the axial diffusion term.

The linear dynamics of ionization waves is reasona
well understood@13,14#. On the other hand, ionization wav
turbulence, despite valuable experimental observations
modeling attempts@15,16#, still bears many open question
We emphasize that many of these questions~for instance the
formation and dynamics of spatiotemporal patterns! are of
quite general nature and are not seen as being specific
ionization waves. Recent investigations have focused on
temporal ionization wave chaos emerging in autonom
@17# and nonautonomous discharges@18–20#. In the autono-
mous case, the chaos establishes spontaneously in ce
parameter regimes. In contrast, the ionization wave chao
the nonautonomous case is excited by an externally app
driving force, i.e., a weak modulation~typically ,5%) of
the discharge current. In this kind of discharge experime
the methods of ‘‘controlling chaos’’@21# have recently been
applied with some success@22–24#.

III. BIORTHOGONAL DECOMPOSITION

For the biorthogonal decomposition of two-dimension
spatiotemporal datau(x,t)PX3T where X5@0,L# and T
5@ t0 ,t1# we define two operators on the Hilbert spac
H(X) andH(T):
t
n
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Uf~x!5E
X
u~x,t !f~x!dx, ~2!

U†c~ t !5E
T
u~x,t !c~ t !dt. ~3!

The operatorsU and U† map H(X) into H(T), and vice
versa. In our calculations, we use theL2 norm. Assuming
compactness ofU one obtains a discrete spectrum ofU and
U† @4#. The corresponding eigenvalue problems

Ufk~x!5akck~ t ! , ~4!

U†ck~ t !5akfk~x! ~5!

are closely related to the eigenvalue problem for the auto
relation function@5#:

UU†ck~ t !5E
X
E

T
u~x,t !u~x,t8!ck~ t !dx dt85ak

2ck~ t !.

~6!

This allows for a decomposition ofu(x,t) in the form

u~x,t !5 (
k51

`

akfk~x!ck~ t !. ~7!

The functionsfk(x) and theck(t) ~called toposand chro-
nos, respectively! are orthonormal, i.e., (fk ,f j )5(ck ,c j )
5dk, j . Theweightsak are real numbers, arranged such th
ak>a l for k. l . Their distribution is quantified by the BD
energyE and BD entropyH that are defined by

E5E
X
E

T
u~x,t !u* ~x,t !dx dt5 (

k51

`

ak
2 , ~8!

H5 lim
N→`

2
1

N(
k51

N

pkln pk ~9!

with pk5ak
2/EP@0,1#. For the analysis of phase evolution

it was introduced in Ref.@9# the complexificationof a pair
( j ,k) of topos and chronos:

F~ j ,k!~x!5f j~x!1 ifk~x!,
~10!

C~ j ,k!~ t !5c j~ t !1 ick~ t !.

As already shown in Refs.@9,10# the phase portrait of
F ( j ,k)(t) ~polar plot! reveals the temporal periodicity of th
wave. The complexification yields afrequency
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n~ j ,k!5
d

dt
argC~ j ,k!~ t ! ~11!

for the reconstructed BD structure. Analogously, awave
numberk ( j ,k) is defined for the corresponding topos. T
reconstructionJ ( j ,k)(x,t) of a BD structure corresponding t
a specifically chosen BD weight pair (a j ,ak) is given by

J~ j ,k!~x,t !5a jf j~x!c j~ t !1akfk~x!ck~ t !. ~12!

This reconstruction is a particular two-dimensional subsp
of the typically high-dimensional original system.

The observed data~discrete in time and space! is written
as a matrixui , j5u(xi ,t j ). The BD then becomes equivale
to the singular value decomposition of the matrixu. The
chronos and topos are then the respective eigenvectors o
temporal and the spatial autocorrelation matrix. It w
pointed out in Ref.@25# that the lack of scaling invarianc
can be circumvented by normalizing each time series to
standard deviations2 after subtracting its average valu
Following this approach, the experimental data are norm
ized as follows:

ui , j8 5
1

s i
2S ui , j2(

j
ui , j D . ~13!

For simplicity, we further drop the prime. The implied a
sumption of temporal homogeneity is justified for the pres
case. We note that Eq.~13! is equivalent to a normalization
with respect to the global energyE.

There are two features that make the BD superior to o
decompositions, its optimality and its ability to detect sp
tiotemporal symmetries. It has been shown@6# that among all
linear decompositions, the BD is the most efficient for mo
elling or reconstructing a signalu(x,t), in the sense of cap
turing the most kinetic energy possible for a projection o
given number of modes. Of special interest in the pres
study is spatiotemporal symmetry, in particular uniform
traveling waves~UTW’s!. They are of the general form

u~x,t1t0!5u~x2x0 ,t !, ~14!

wherec5x0 /t0 is the propagation velocity. This leads to
multiplicity of the BD weights, and the BD is equivalent to
Fourier decomposition@7#.

More complex spatiotemporal structures linked to deg
erated BD weights aremodulateduniformly travelling waves
~MUTW’s! @8#. They are defined by their two modulatio
functionsM (x):X→R andN(t):T→R

J̃~x,t !5M ~x!N~ t !@a jf j~x!c j~ t !1akfk~x!fk~ t !#,
~15!

wherec j (t),ck(t) and f j (x),fk(x) are given by the bior-
thogonal decomposition of a UTW. The corresponding co
plexifications~10! read

F̃~ j ,k!~x!5M ~x!F~ j ,k!~x!, ~16!

C̃~ j ,k!~ t !5N~ t !C~ j ,k!~ t !.
e
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The structure of the topos and chronos of the MUTW allo
one to specify the form ofM (x) andN(t). Since the topos
and chronos are no longer simple Fourier modes, conv
tional spectral analysis cannot accomplish this task@7#.

IV. RESULTS

Three different dynamical states of ionization waves
considered for the BD analysis. As mentioned above,
autonomous discharge experiment is typically found eithe
a regular state~a single ionization wave! or in the turbulent
state, depending on the set of operation parameters, i.e.,
tral gas pressure and discharge current. These two gen
states are studied in Sec. IV A. To develop a better und
standing of the complex dynamics in the observed tur
lence, we additionally consider a quasiperiodic state tha
established in the discharge by a periodic external pertu
tion ~Sec. IV B!. This allows for a detailed investigation o
the properties of MUTW’s which are shown to play an im
portant role in the present kind of turbulence. The validity
the chosen approach is supported by the fact that the tra
tion to turbulence in the periodically driven~nonautono-
mous! discharge follows the quasiperiodicity route@19#. Ion-
ization wave turbulence in the autonomous and in
nonautonomous discharge system has very similar dynam
properties.

Figure 2 shows time series of the light emission and
corresponding power spectra of the three different dynam
states. The regular state is characterized by a periodic o
lation of the light emission. The power spectrum is shar
peaked atf 052.31 kHz, with pronounced higher harmonic
due to the nonsinusoidal shape of the fluctuations. In
quasiperiodic state, the nonlinear interaction between
self-excited ionization wave~with frequencyf 052.06 kHz

FIG. 2. Time traces and power spectra of the light fluctuatio
taken from a single, arbitrarily chosen, photodetector. The th
observed dynamical states are~a! regular,~b! quasiperiodic, and~c!
turbulent. The quasiperiodic state~b! is observed in the nonautono
mous discharge with a periodic driver of frequencyf d

51.68 kHz.
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FIG. 3. BD analysis of the regular state.~a! Spatiotemporal raw data.~b! Distribution of the most important BD weights.~c! Recon-
structionJ (1,2)(x,t). ~d! Fourier spectra of chronosc1(t) andc2(t) with their complexification shown in the inset~left!, and Fourier spectra
of toposf1(x) andf2(x) with their complexification shown in the inset~right; the first and the last six points of each complexification ha
been shaded gray to demonstrate finite size effects!. ~e! ReconstructionJ (3,4)(x,t). ~f! Same as~d! for pair ~3! and ~4!.
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and higher harmonics! and the driver~with frequency f d
51.68 kHz and higher harmonics! leads to the occurrenc
of sidebands at frequenciesf 5n f06m fd (n,mPN). In the
turbulent state, the time series is strongly irregular, es
cially in the phase, and the power spectrum is broad. We
a close similarity of the shape of the fluctuation signals
certain solutions of the Kuramoto-Sivashinsky equat
@5,26#.

For the subsequent discussion of the BD analysis of
experimental data, we have chosen the following comm
layout. Each dynamical state is described by a group of
grams. In the first row, we show the normalized spatiote
poral data and the spectrum of BD weights. The second
third rows show selected pairs of chronos and topos, i.e.,
reconstructionJ ( j ,k)(x,t) @cf. Eq.~12!# and the Fourier spec
tra ~linear scale! of the chronos and topos pairs (j ,k). The
phase portrait of the complexification~10! is shown in the
insets of the corresponding Fourier spectra. Here and du
the subsequent discussion frequencies are expressed in
of the Nyquist frequency.

A. Autonomous system

Figure 3 shows the result of the BD analysis of the regu
~time and space periodic! state of the ionization waves. Th
symmetry condition~14! is clearly satisfied and pairsa2i 21
5a2i ( i 51,2, . . . ) of degenerated weights are forme
Each of them corresponds to a traveling wave with the sa
spatiotemporal symmetry~14!, meaning the same phase v
locity. The spectra of the chronos are nearlyd-peaks atf 0
50.15 and 2f 050.30. Hence the BD modes are equivale
to Fourier modes, and the subspaceJ (3,4)(x,t) is simply the
e-
d
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e

t

first harmonic of subspaceJ (1,2)(x,t). This finding is con-
sistent with the above statement on the constant phase v
ity of the BD modes, a hallmark of higher harmonics. T
phase portraits of the complexifications shows the regula
of the chronos and topos. They form nearly perfect circl
which is a further indication of equivalence to Fouri
modes, which are the most natural description of UTW’s

The turbulence state of the plasma column is shown
Fig. 4. Here, the degeneracy of the BD weights is much l
obvious and, to form pairs, we have to rely on similarities
the Fourier spectra of the chronos and topos. The most e
getic reconstructionJ (1,2)(x,t) still contains a significant
regular part, indicated by the pronounced peak atf 050.19 in
the Fourier spectrum. However, in contrast to the regu
state~Fig. 3!, the spectrum shows additional components
f , f 0 with a peak atf 150.10. The BD modes thus strongl
deviate from Fourier modes, indicating spatiotempo
modulations. The situation is very similar in the reconstru
tion J (3,4)(x,t). The phase velocitiesn (1,2) and n (3,4) are
strongly changing in time, reflecting the varying slope of t
wave fronts in the reconstruction. The wave numbersk (1,2)
and k (3,4) remain nearly constant in time~not shown!. The
phase portraits of the chronos and topos ofJ (1,2)(x,t) and
J (3,4)(x,t) are not circular but are almost space filling. R
constructionsJ ( j , j 11)(x,t) of higher orderj .4 have a simi-
lar structure and are not shown.

Both the multipeaked power spectra and the noncircu
phase portraits of the chronos and topos pairs suggest st
modulation of UTW’s. At this point, however, it is difficul
to specify the modulation type precisely. In Ref.@9#, for a
different physical situation~drift waves in magnetized plas
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FIG. 4. BD analysis of the turbulence state.~a! Spatiotemporal raw data.~b! Distribution of the most important BD weights.~c!
ReconstructionJ (1,2)(x,t). ~d! Fourier spectra of chronosc1(t) andc2(t) with their complexification shown in the inset~left!, and Fourier
spectra of toposf1(x) andf2(x) with their complexification shown in the inset~right; the first and the last six points of each comple
fication have been shaded gray to demonstrate finite size effects!. ~e! ReconstructionJ (3,4)(x,t). ~f! Same as~d! for pair ~3! and ~4!.
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mas!, complex modulation of UTW’s was considered. In
recent theoretical study, real-valued modulation functions
type ~15! have been investigated in detail. Tentatively, w
conclude that ionization wave turbulence is characterized
symmetry modifications due to strong modulation of UTW
Due to the complicated structure of the two-dimensional
constructions, the construction of the full set of differe
modulation functions is a very demanding task. As a fi
step toward this goal, a highly simplified situation, the qu
siperiodic state, is studied in Sec. IV B. Roughly speaki
the quasiperiodic state can be seen as the lowest orde
proximation to turbulence.

We finally note that the analysis of the turbulent data
is facilitated by the BD approach. The mutual mapping b
tween chronos and topos established by Eq.~5! yields the
spatiotemporal reconstructions~12! of BD modes that are
clearly more complex than Fourier modes. The reconstr
tions, discussed together with their weights, provide a m
detailed view of the spatiotemporal patterns present in
turbulent system.

B. Nonautonomous system

To investigate more precisely the modulation effect
traveling waves, the discharge is driven externally by a
riodic current modulation. This launches a second ionizat
wave mode with the frequency of the driver signalf d
50.12. As a result, a quasiperiodic state is established w
is considered here as the weakest form of turbulent dyn
ics.

The spatiotemporal data of the quasiperiodic st
is shown in Fig. 5. There is still a pronounced dege
f
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eracy in the weights and four BD reconstructio
J ( j , j 11)(x,t) ( i 51, 3, 5, and 7! are identified. The first re-
constructionJ (1,2)(x,t) has exactly the same features as t
one in the regular state Fig. 3. The BD modes are equiva
to Fourier modes, and are specified as UTW’s. The sa
holds for J (3,4)(x,t) and J (5,6)(x,t) ~not shown!. The sub-
systemJ (7,8)(x,t), however, represents a modulated UTW
The phase portraits ofF (7,8)(x) andC (7,8)(t) show that the
phase evolution is varying in time and the Fourier spectr
is multipeaked. To provide an overview, the frequencies a
wave numbers in the quasiperiodic state are compiled
Table I.

The first three pairs form a group of higher harmonic
comparable to the regular state described in Sec. IV A.
these frequencies and wave numbers are incommensura
the most dominant frequency component found in the F
rier spectrum of the chronos pair@Eqs. ~7! and ~8!#. This is
an important feature of the quasiperiodic state, and the do
nant frequency component in the spectrum is identified w
a second ionization wave, launched by the external perio
perturbation. It was pointed out in Ref.@8# that the spa-
tiotemporal modulation introduces additional sidebands~here
at f n50.1246mD f with D f 50.023 andmPN) in the Fou-
rier spectra of the chronos and topos. The group velocity
the wave is given bycg52p]n/]k. It is suggested by the
values listed in Table I that the group velocity of the wa
has a negative sign~the higher frequency mode has a low
wave number!. It is indeed one of the most prominent fe
tures of ionization waves to be backward waves, i.e., to h
phase and group velocities with opposite sign.
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FIG. 5. BD analysis of the quasiperiodic state.~a! Spatiotemporal raw data.~b! Distribution of the most important BD weights.~c!
ReconstructionJ (1,2)(x,t). ~d! Fourier spectra of chronosc1(t) andc2(t) with their complexification shown in the inset~left!, and Fourier
spectra of toposf1(x) andf2(x) with their complexification shown in the inset~right; the first and the last six points of each comple
fication have been shaded gray to demonstrate finite size effects!. ~e! ReconstructionJ (7,8)(x,t). ~f! Same as~d! for pair ~7! and ~8!.
ea
d
ie
s

at
is
th
th

za
o
io

is
ned
it is
ion-
ear
se-
on

cro-

n the
-

igen-
m-
y
the
It is

ym-
ring
eve
and
t the
no-

nc
C. BD entropies

As discussed in Sec. III, the BD entropy provides a r
sonable measure of the spatiotemporal complexity of the
namics. In Table II, the computed values of the BD entrop
Eq. ~9! are listed for the three different dynamical state
Since in the transition from the regular to the turbulent st
the energy is spread over the different BD modes, there
pronounced raise in the entropy. We bear in mind that
information on the BD energy was already introduced in
normalization~13!.

V. DISCUSSION

In the general class of reaction-diffusion systems, ioni
tion waves are seen as a revealing example. This is m
vated by the processes involved in the physical ionizat

TABLE I. Frequencies, wave numbers, and phase velocitiescn

5 f n /kn of the BD modes in the quasiperiodic state. The freque
uncertainty of the spectral peaks isd f 50.005.

( i , j ) f n kn cn

~1,2! 0.08 0.07 1.14
~3,4! 0.16 0.14 1.14
~5,6! 0.24 0.21 1.14
~7,8! 0.124 0.407 0.302

0.188 0.531 0.354
0.056 0.312 0.179
0.212 0.641 0.331
0.148 0.469 0.354
-
y-
s
.
e
a
e
e

-
ti-
n

wave mechanism. The motion of the charged particles
governed by diffusion, and the particle balance is determi
by ionization and recombination losses. To some extent,
thus reasonable to expect experimental observations in
ization wave turbulence to be of relevance for the nonlin
dynamics of reaction-diffusion systems in general. Con
quently, in the present discussion, we focus our attention
universal spatiotemporal structures rather than on the mi
scopic physical mechanisms involved.

The approach chosen in the present paper is based o
projection of the spatiotemporal dynamics on low
dimensional subspaces spanned by the most energetic e
modes of the biorthogonal decomposition, also called ‘‘e
pirical eigenmodes’’@6# owing to the fact that they are solel
determined by the experimental observation. We restrict
discussion to the symmetry properties of the subspaces.
the main goal of the present study to examine how the s
metry of spatiotemporal structures changes when compa
ionization waves in regular and turbulent states. To achi
this goal, spatiotemporal data for regular, quasiperiodic,
turbulent states are taken into consideration. We note tha
quasiperiodic state is generally not observed in the auto
mous discharge experiment.

y

TABLE II. The BD entropy of different dynamical states.

State Entropy

regular 0.44
quasi-periodic 0.55
turbulent 0.80
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The most simple situation is the regular state where o
one traveling wave is present. The BD weights are ordere
a sequence of degenerated pairs, each of them correspo
to the same spatiotemporal symmetry~14!. This is revealed
by the agreement of the phase velocitiesc( j , j 11) of the dif-
ferent BD reconstructionsJ ( j , j 11) . The linear superposition
of the reconstructions forms the~nonmonochromatic! uni-
formly traveling wave. According to Ref.@7#, the BD here is
fully equivalent to a Fourier analysis.

At first glance, the weight distribution of the quasipe
odic state looks very similar. The BD weights are still o
dered in pairs, indicating spatiotemporal symmetry, but
additional wave with the new frequency corresponding to
pair @Eqs.~7! and~8!# introduces a different propagation ve
locity c(7,8)Þc(1,2) ~cf. Table I! and a new symmetry@8#. The
Fourier spectrum ofJ (7,8) shows pronounced side band
clearly indicating a MUTW@8#. The complexifications~16!
of a MUTW with frequencyv, wave numberk, and phase
velocity c5v/k simply read

F̃~7,8!~x!5M ~x!exp~ ikx! , ~17!

C̃~7,8!~ t !5N~ t !exp~ ivt !. ~18!

We specify the real-valued modulation functionsM (x) and
N(t) by thephase modulationansatz

M ~x!5 1
2 @exp$ imxsin~k8x!%1exp$2 imxsin~k8x!%#,

~19!

N~ t !5 1
2 @exp$ im tsin~v8t !%1exp$2 im tsin~v8t !%#.

~20!

Since the exponential expressions in Eqs.~19! and ~20! are
generating functions, they can be expressed in a series
pansion

exp[imxsin~k8x!] 5 (
n52`

`

Jn~mx!exp~ ink8x!, ~21!

where theJn(mx) are the Bessel functions of ordern. Similar
expressions are obtained forN(t) and since Jn(2x)5
(21)nJn(x) we finally obtain, for the complexifications,

F̃~7,8!~x!5 (
n52`

`

mx
nexp@ i ~2nk81k!x#, ~22!

C̃~7,8!~ t !5 (
m52`

`

m t
mexp@ i ~2nv81v!t#, ~23!

with the new modulation coefficientsmx
n5J2n(mx) and m t

m

5J2m(m t). The two-dimensional subsystem reads

J~7,8!~x,t !5Re@F̃~7,8!~x!#Re@C̃~7,8!~ t !#

1Im@F̃~7,8!~x!#Im@C̃~7,8!~ t !# ~24!
ly
in
ing

e
e

x-

Without loss of generality, we seta75a851. After some
manipulations for Eq.~24! we obtain the expression

J~7,8!~x,t !5 (
n52`

`

(
m52`

`

mn
xmm

t cos@~k12nk8!x

1~v12mv8!t#. ~25!

This is identical with the formula given in Ref.@8#. The
coefficientsmn

x and mm
t and the modulation frequenciesv8

andk8 can be explicitly estimated by the experimentally o
tained Fourier spectra of the chronos and the topos. We
the values given in Table III.

The relatively smallmn
x and mm

t with unu.4 are ne-
glected. We note that phase modulation suppresses sideb
with odd multiples of the modulation frequencyv8. Follow-
ing the classification of Ref.@8#, the Fourier sidebands ar
resonant. The chronos and topos are no longer Four
modes, meaning that the symmetry relation~14! is no longer
valid. The spatiotemporal translation symmetry of the reg
lar state is changed by the spatial and temporal modulat
In Fig. 6 the two-dimensional subsystem~25! is depicted.
There are many features of the reconstructed modula
function that agree well with experimental observations. T

FIG. 6. Model description of the spatiotemporal dynamics of
quasiperiodic state.~a! Spatiotemporal pattern.~b! Fourier spectrum
of chronos and topos.

TABLE III. Modulation coefficients of the quasiperiodic state.

v50.124 k50.407
v85Dv/250.0125 k85Dk/250.036

m23
t 53.129

m22
t 50

m21
t 50 m21

x 50.79
m0

t 511.89 m0
x53.13

m1
t 51.5 m1

x51.89
m2

t 50 m2
x51.49

m3
t 53.46 m3

x51.29
m4

t 52.06
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comparison between Fig. 6 and the two-dimensional BD
constructions~Figs. 5 and 4! shows that the spatially local
ized amplitude crashes~wave amplitude nearly vanishes! as
well as the periodic occurrence of short wave trains
solely caused by phase modulation@Eqs.~19! and~20!#. Both
in turbulent and quasiperiodic states, the two-dimensio
subsystems of MUTW’s have these two features; in the
bulent state the sequence of crashes and wave train
slightly more complicated. The pronounced time evoluti
of the wave amplitude is also the reason for the space-fil
phase portraits of the topos and chronos in Figs. 5~f!, 4~d!,
and 4~f!. The power spectra of the chronos and topos ag
by construction. In Ref.@9# plasma drift waves were inves
tigated following essentially the same strategy. The modu
tion of waves turned out to be a valuable concept as well,
the modulation is complex valued, and consequently the t
dimensional subsystems have a more complicated time
lution.

From the discussion above, we conclude that the tur
lence state is established by increasing phase modulatio
space and time of the involved waves. The modulation le
to a breaking of the spatiotemporal symmetry. The ph
modulation becomes evident by inspection of the Fou
spectra and the phase portraits of chronos and topos in
turbulent state~cf. Fig. 4!. The multipeaked spectra and th
noncircular phase portraits suggest that a modulation sim
to the one observed in the quasiperiodic state occurs.
-
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increase of the BD entropy~cf. Table II! defined by Eq.~9!
quantifies the increase of spatiotemporal disorder during
transition to turbulence@27#.

VI. SUMMARY

In this paper we investigated symmetry properties of t
bulence in a plasma discharge, that is used as an exampl
a reaction-diffusion system. The analysis is done by bi
thogonal decomposition~BD!, which is superior to Fourier
analysis with respect to the detection of spatiotemporal s
metries. We investigated the role of modulated travel
waves in the development of turbulence and the quasip
odic state of a nonautonomous~periodically forced! dis-
charge. The analysis of the symmetry properties of the
eigenmodes reveals the importance of modulated unifor
traveling waves. Modulation leads to a breaking of sp
tiotemporal symmetries. Suggested by the experimental
servation, phase modulation was assumed to be the pred
nant process. From the BD analysis the modulation funct
was explicitly reconstructed, and a good agreement with
experimental results was found.
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